Jane Liang

San Francisco Bay Area

☑ jwliang@stanford.edu

a janewliang.github.io

Education

2022 | Harvard University

Ph.D. in Biostatistics

Dissertation: Innovative approaches for risk assessment in panel gene testing

Advisor: Giovanni Parmigiani

Committee members: Danielle Braun & Peter Kraft

2015 | University of California, Berkeley

B.A. in Statistics, with Honors

Honors thesis: *Comparing dependence measures using simulation studies*

Supervisor: Haiyan Huang

Experience

July 2022 – Present Stanford University School of Medicine, Quantitative Sciences Unit

Palo Alto, CA

Senior Biostatistician

Collaborative data science for advancing clinical research in areas including hepatology, COVID-19, clinical trials, organ transplants, and diversity in medicine.

Aug. 2017 – May 2022

Harvard T.H. Chan School of Public Health, Department of Biostatistics

Dana-Farber Cancer Institute, Department of Data Science

Boston, MA

Graduate Student Researcher

Statistical methodology and software development for clinical risk assessment in panel gene testing.

Oct. 2016 – July 2017

University of Tennessee Health Science Center

Department of Preventive Medicine, Division of Biostatistics

Memphis, TN

Scientific Research Programmer

Writing, testing, and documenting software applications based on research requirements; maintaining Division's high performance computing systems.

Publications

- [1] **Jane W. Liang**, Kurt D. Christensen, Robert C. Green, and Peter Kraft. A framework evaluating the utility of multi-gene, multi-disease population-based panel testing that accounts for uncertainty in penetrance estimates. 2022. Submitted to *npj Genomic Medicine*. bioRxiv: 10.1101/2022.08.10.503415.
- [2] **Jane W. Liang**, Gregory E. Idos, Christine Hong, Stephen B. Gruber, Giovanni Parmigiani, and Danielle Braun. Statistical methods for Mendelian models with multiple genes and cancers. *Genetic Epidemiology*, 2022. doi: 110.1002/gepi.22460.

- [3] **Jane W. Liang** and Śaunak Sen. Sparse matrix linear models for structured high-throughput data. *The Annals of Applied Statistics*, 16(1):169–192, 2022. doi: 10.1214/21-aoas1444.
- [4] Anne Marie McCarthy, Yi Liu, Sarah Ehsan, Zoe Guan, **Jane W. Liang**, Theodore Huang, Kevin Hughes, Alan Semine, Despina Kontos, Emily Conant, et al. Validation of breast cancer risk models by race/ethnicity, family history and molecular subtypes. *Cancers*, 14(1):45, 2022. doi: 10.3390/cancers14010045.
- [5] Gavin Lee*, **Jane W. Liang***, Qing Zhang, Theodore Huang, Christine Choirat, Giovanni Parmigiani, and Danielle Braun. Multi-syndrome, multi-gene risk modeling for individuals with a family history of cancer with the novel R package PanelPRO. *eLife*, 10:e68699, 2021. doi: 10.7554/eLife.68699.
- [6] Yunqi Yang, Christine Hong, **Jane W. Liang**, Stephen Gruber, Giovanni Parmigiani, Gregory Idos*, and Danielle Braun*. A likelihood-based approach to assessing frequency of pathogenicity among variants of unknown significance (VUS) in susceptibility genes. *Statistics in Medicine*, 40(3):593–606, 2020. doi: 10.1002/sim.8791.
- [7] **Jane W. Liang**, Robert J. Nichols, and Śaunak Sen. Matrix linear models for high-throughput chemical genetic screens. *Genetics*, 212(4):1063–1073, 2019. doi: 10.1534/genetics.119.302299.
- [8] Alexandra H. Bartlett, **Jane W. Liang**, Jose Vladimir Sandoval-Sierra, Jay H. Fowke, Eleanor M. Simonsick, Karen C. Johnson, and Khyobeni Mozhui. Longitudinal study of leukocyte DNA methylation and biomarkers for cancer risk in older adults. *Biomarker Research*, 7(1):1–13, 2019. doi: 10.1186/s40364-019-0161-3.
- [9] Hemant Gujar, **Jane W. Liang**, Nicholas C. Wong, and Khyobeni Mozhui. Profiling DNA methylation differences between inbred mouse strains on the Illumina Human Infinium MethylationEPIC microarray. *PLOS ONE*, 13(3):e0193496, 2018. doi: 10.1371/journal.pone.0193496.

Presentations

- [1] "PanelPRO: A general framework for multi-gene, multi-cancer Mendelian risk prediction models" (invited speaker). University of Tennessee Health Science Center (UTHSC) Biostatistics Seminar Series. Virtual, October 18, 2021.
- [2] "Aggregating across genes and cancers in Mendelian risk prediction modeling" (contributed speed talk). Joint Statistical Meetings (JSM) . Virtual, August 12, 2021.
- [3] "Aggregating across genes and cancers in Mendelian risk prediction modeling" (oral presentation)

 . Dana-Farber/Harvard Cancer Center Celebration of Early Career Investigators in Cancer Research (DF/HCC CECI). Virtual, January 21, 2021.
- [5] "Sparse matrix linear models for structured high-throughput data" (contributed poster and light-ning talk). Integrative Biostatistics Research for Imaging, Genomics & High-throughput Technologies in Precision Medicine (iBRIGHT), MD Anderson Cancer Center ☑. Houston, TX, November 11, 2019.
- [6] "Matrix linear models for high-throughput data" (contributed lightning talk) . JuliaCon, University of California, Berkeley . Berkeley, CA, June 23, 2017.

^{*} indicates equal contributions

Honors

2021 – 2022	Pedagogy Fellowship 🗹 Harvard T.H. Chan School of Public Health, Office of Education	
Spring 2021	Certificate of Distinction in Teaching Harvard University, Derek Bok Center for Teaching and Learning	
2020 - 2021 2019 - 2020	Certificate of Distinction in Teaching (\times 4) Harvard T.H. Chan School of Public Health, Department of Biostatistics	
Jan. 2021	Best Oral Presentation Dana-Farber/Harvard Cancer Center Celebration of Early Career Investigators in Cancer Research (DF/HCC CECI) ☑	
Dec. 2015	Phi Beta Kappa University of California, Berkeley	
Dec. 2015	Distinction in General Scholarship University of California, Berkeley	
Competitive Travel and Conference Support		
Nov. 2019	Integrative Biostatistics Research for Imaging, Genomics & High-throughput Technologies in Precision Medicine (iBRIGHT) MD Anderson Cancer Center	
June 2017	JuliaCon 🗹 University of California, Berkeley	
May 2017	50th Annual Barrett Memorial Lectures: Mathematical Foundations of Data Science ☑ University of Tennessee, Knoxville	
Feb. 2017	Workshop on the Interface of Statistics and Optimization (WISO) Statistical and Applied Mathematical Sciences Institute (SAMSI)	
Oct. 2016	Short Course on Systems Genetics The Jackson Laboratory	
	The Jackson Laboratory	

Teaching

Aug. 2021 -	Harvard T.H. Chan School of Public Health, Office of Education
May 2022	Boston, MA
	Pedagogy Fellow 🗹
	Developing new course BST 219 (Core Principles of Data Science) and materials on
	practical/cluster computing; implementing solutions to other educational projects
	for the school and Department of Biostatistics.

Harvard T.H. Chan School of Public Health, Department of Biostatistics

Boston, MA

Teaching Fellow

Leading lab sections, designing course materials, holding office hours, monitoring online discussion boards, grading assignments, and supporting master's, doctoral, and clinical students from diverse fields.

Spring 2021 BIOSTAT 231/BST 231: Statistical Inference I (remote)
BST 260: Introduction to Data Science ♂ (remote)
BST 263: Statistical Learning (in-person and remote)
BST 260: Introduction to Data Science ♂ (in-person)
Spring 2019 BST 210: Applied Regression Analysis (in-person)

McGoldrick Professional Development Program in Public Health ☑ Harvard T.H. Chan School of Public Health, University of KwaZulu-Natal − Pietermaritzburg & the ARISE network

Boston, MA

Teaching Assistant

Training researchers from low-and middle-income countries in quantitative methods and building a collaborative network in sub-Saharan Africa.

Feb. 2021 | Health Data Science (remote)

Harvard T.H. Chan School of Public Health, Department of Biostatistics

Boston, MA

Curriculum Fellow

Designing course materials, including exams, homework, and lab assignments.

Fall 2020 | BST 260: Introduction to Data Science 🗹

Software

R: PanelPRO

Julia: MatrixLMnet, MatrixLM, GeneticScreens

Service

Referee: Cancer Epidemiology, Biomarkers & Prevention; PLOS ONE

Skills

High proficiency: R, Julia, Python, LaTeX, distributed version control (Git, Mercurial), high

performance cluster computing, Linux environments

Some proficiency: C++, STATA, MATLAB